
Accelerating Network Traffic Analytics Using Query-Driven Visualization

E. Wes Bethel∗

Computational Research Division

Scott Campbell
National Energy Research Scientific Computing Center Division

Eli Dart
Energy Sciences Network

Kurt Stockinger
Computational Research Division

Kesheng Wu
Computational Research Division

Lawrence Berkeley National Laboratory
University of California

Berkeley, CA 94720

Abstract
Realizing operational analytics solutions where large and com-

plex data must be analyzed in a time-critical fashion entails integrat-
ing many different types of technology. Considering the extreme
scale of contemporary datasets, one significant challenge is to re-
duce the duty cycle in the analytics discourse process. This paper
focuses on an interdisciplinary combination of scientific data man-
agement and visualization/analysis technologies targeted at reduc-
ing the duty cycle in hypothesis testing and knowledge discovery.
We present an application of such a combination in the problem do-
main of network traffic data analysis. Our performance experiment
results show that the combination can dramatically decrease the an-
alytics duty cycle for this particular application. The combination
is effectively applied to the analysis of network traffic data to detect
distributed scans, which is a difficult-to-detect form of cyberattack.
We reduce the analytics duty cycle by leveraging high-performance
data management technology for indexing and querying data: fast
query technology accelerates the mechanics of hypothesis testing,
and straightforward visualization of readily available data distribu-
tions accelerates query formulation and knowledge discovery. Our
approach is sufficiently general to be applied to a diverse set of data
understanding problems as well as used in conjunction with a di-
verse set of analysis and visualization tools.

CR Categories: H.2.8.h [Interactive data exploration and discov-
ery];I.6.9.d [Multivariate visualization]; K.6.M.b [Security]; J.8.o
[Traffic Analysis]

Keywords: query-driven visualization, network security, data
mining, visual analytics

1 Introduction
Visual Analytics is defined in [27] as “the science of analytical

reasoning facilitated by active visual interfaces.” It is motivated by
the need to gain understanding of features, trends and anomalies
present in large and complex data collections. While a thorough
discussion of the immense scope of all possible technical challenge
areas and motivations is well beyond the scope of this paper, inter-
ested readers are directed to [27], which is a broad survey of the
current state of research and development challenges in the field.
From that broad set of challenges, one in particular is the focus of
this paper: how to quickly find “interesting data” in large, multidi-
mensional collections of information. We explore this topic within
the context of a cybersecurity application, namely network traffic
analysis.

Network traffic datasets consist of records containing a num-

∗e-mail: ewbethel@lbl.gov, scampbell@lbl.gov, dart@es.net,
kstockinger@lbl.gov, kwu@lbl.gov

ber of variables that summarize a particular network connection,
or “conversation” between two hosts on a network. These data
– known as connection records – are generated by routers, traf-
fic analyzers or security systems, and contain such information as
source and destination IP address of the conversing hosts, the source
and destination ports, duration of connection, number of bytes ex-
changed and so forth. There is no information about the traffic
content, only information about the two hosts participating in the
connection. With the explosive growth of the Internet, there is a
corresponding rise in the amount of information collected about
network connections as well as an increase in the number of anoma-
lous events. Such events may be indicative of a misconfigured host
or network, inappropriate use of resources, an attack on a computer
system or network, a compromised host, or any one of a number of
other items of interest. Collecting, managing and understanding the
growing amount of network connection data in a timely fashion all
present substantial challenges for network operations personnel.

A broad view of the network traffic analysis problem would
necessarily include data collection, data storage and management,
automatic feature detection, event characterization, analytical dis-
course to understand features and discover their relationships along
with timely response to a particular incident. The work we present
here explores a of subset the complete network traffic analysis prob-
lem. Namely, we focus on a multidisciplinary approach to feature
mining and hypothesis testing by combining scientific data man-
agement tools for indexing and querying with simple visualization
tools. The overall objective of our work is to reduce the duty cy-
cle in hypothesis testing and feature mining. This paper describes
how we achieve that objective within the context of a network traf-
fic analysis case study. The results are particularly relevant given
the explosive growth in network traffic and network traffic data. To
be effective, a complete visual analytics solution will need to ad-
dress problems of scale, to make effective use of high performance
computing resources, and to quickly provide answers to analysts.
Arguably, effective data management is the cornerstone for all such
applications.

The main contributions of this paper are: (1) an integrated, cross-
disciplinary approach combining state-of-the-art data management,
well-understood visualization techniques and a straightforward in-
terface results in a new data analytics capability that is highly effec-
tive and efficient; (2) application of this approach to a “hero-sized”
network traffic data analysis problem.

The rest of this paper is structured as follows. Section 2 presents
a survey of previous work in fields related to the topic of this paper.
Since our work realizes new capability by integrating and applying
ideas from several different fields in a multi- and inter-disciplinary
fashion, we discuss prior work from several different but related
fields. Section 3 presents an experiment profiling the performance
of different technologies for performing queries on a realistic-sized
collection of network traffic data. The main point of this experi-
ment is to highlight the vastly different performance capabilities of

different technologies. Section 4 contains a network traffic analy-
sis case study where the confluence of scientific data management
and visualization comprise a visual analytics implementation. We
capitalize upon fast queries vis a vis bitmap indexing to reduce the
duty cycle in knowledge discovery. A cornerstone of our visual an-
alytics approach is to use unique the characteristics of a bitmap in-
dexing implementation, namely the ability to quickly generate data
distribution graphs (histograms), and straightforward and easy-to-
understand visualization to implement the visual analytics portion
component of knowledge discovery and data mining. The network
traffic analysis case study was designed by network analysts specif-
ically using the new concepts resulting from the intersection of vi-
sualization and data management.

2 Background and Related Work
In recent years, there has been a tremendous increase in research

and development projects in the areas of network traffic analysis
and visualization. Related to the material we present here is pre-
vious work in the fields of scientific data management, particularly
techniques for efficient indexing and querying, as well as visualiza-
tion systems that focus on limiting visual processing only to data
deemed to be “of interest” to the viewer.
2.1 Network Traffic Analysis

There exists an increasing need for visual analytics tools in the
fields of network analysis and forensics. Raw traffic logs have long
been too large and complex for a human to digest and understand.
In particular, there is a need for tools that provide insight into pat-
terns in data sets that are large in volume, time or both. Intrusion
Detection Systems (IDS) are typically good at analyzing events that
are closely correlated in time, and where analysis can rapidly yield
actionable results. However, over large time scales and/or very
large data sets, the design decisions that make IDS software appro-
priate for rapid response limit applicability to problems of scale.
Typical failure modes include unbounded memory consumption or
computational overload that inhibits a rapid response. Moreover,
connection analysis lends itself to visual analytics, since features
and patterns that are easily visible to a skilled analyst are often diffi-
cult to quantify precisely or to detect programmatically. Therefore,
visual analytics tools are best thought of as a complement to IDS
software, and part of a broad technology portfolio in the network
analyst’s toolbox.

Traditional high volume network traffic analysis usually begins
after the IDS provides an alert, such as when one or more IP ad-
dresses are associated with a possible attack. If the analyst will be
examining short-term connection data – less than 24 hours worth of
data – then the connection logs are dumped straight to local disk.
These logs can usually be queried in 10 seconds or less. For anal-
ysis that spans longer periods of time, a dedicated system is typi-
cally available that can process connection logs at the rate of 5-7
minutes per month for one or more IP addresses. The tool typically
used for searching text-format connection records is grep. Once the
subset of interesting connection data have been extracted from the
larger set of logs, the analyst performs more specialized processing
pursuant to the particular line of inquiry. Initial queries – search
terms – based on anything other than a single column are rarely
performed. Post-processing of search results is performed using
tools such as perl, shell scripts and gnuplot. The time required for
these steps is proportional to the amount of script development and
analysis required for the particular incident.

Historically, the problem with large-scale analysis tools for net-
work traffic has been that the duty cycle for testing a given hy-
pothesis is measured in hours for non-trivial data sets. There-
fore, a reduction in turnaround time from hours to seconds rep-
resents an unprecedented new capability. The new capability mi-
grates large-scale network connection analysis from the realm of
overnight batch jobs to that of interactive tools.

Visualization techniques permit an analyst to look at thousands

or hundreds of thousands of connections simultaneously. Simple
data filtering is both valuable and necessary to deal with the huge
volume of data and the large dynamic range exhibited by many
of the attributes. Applying multi-dimensional transformations, de-
riving statistical quantities and applying clustering techniques pro-
vides new and often more relevant quantities to visualize, as well as
more relevant keys for indexing and querying.

A network connection can be thought of as a set of packets pass-
ing between two hosts within a given time interval that have com-
mon characteristics. An example of a network connection is a sin-
gle communication session or an interaction between two hosts on
the Internet. Several standard tools exist for capturing network con-
nection data. Tcpdump is one of the most commonly used; it is a
pcap-based application that can run on most operating systems and
logs network traffic based on a filtering expression [7, 14]. For
larger environments, routers and switches can provide connection
data in specialized formats such as NetFlow [26] or SFlow [19].
Special purpose systems and software for analyzing NetFlow and
SFlow records have been implemented by network equipment ven-
dors, but these tools are typically optimized for aggregate network
usage and trend analysis. Some network connection data collection
and reporting systems generate a separate record for each direction
of bidirectional connection [18] Other systems generate a single
full-duplex connection record that also contains byte and packet
counts for the reverse direction [28]. Individual network services
like HTTP are application-level services built atop transport-level
protocols (TCP, UDP).

For this discussion we describe connection dynamics in terms
of TCP session characteristics. A network connection record gen-
erally contains at least the following information: 1. Source IP
address, 2. Destination IP address, 3. Source Port, 4. Destination
Port, 5. Byte and packet count sent by source, 6. Byte and packet
count sent by destination, 7. Start and End time in milliseconds. 8.
TCP state.

A typical day’s worth of traffic at an ”average” government re-
search laboratory might involve tens of millions of such connec-
tions comprising multiple gigabytes worth of connection records.
A year’s worth of such data currently requires on the order of tens
of terabytes or more of storage. According to Burrescia [3], traf-
fic volume over ESnet, a production network servicing the U. S.
Department of Energy’s research laboratories, has increased by an
order of magnitude every 46 months since 1990. This trend is ex-
pected to continue into the foreseeable future.

2.2 Network Traffic Visualization
There has been a good deal of work in recent years in the area of

interactive network traffic visualization. A thorough survey of such
work is outside the scope of this paper since we are focusing on cou-
pling data management technology with network traffic visualiza-
tion and analysis tools. See [13] for a good survey of previous work
in this area. Generally speaking, previous work has focused on fil-
tering and visual presentation of different types of network traffic
data, including connection data, routing information, IDS alerts and
so forth.

Visualization applications aimed at providing overall situational
awareness by visualization network connection data are described
in [12, 15]. These applications map network connection variables
to axes, then present activity, or lack thereof, at the appropriate grid
location. The basic idea is to facilitate rapid visual discovery of
incidents or other features. [15] uses interactive filter manipulation
to reduce the amount of data being displayed. In this way, a user
can focus visual inspection only on data that matches a set of fil-
tering criteria. In both these examples, the problem size consists of
datasets comprised of a few thousand unique network connections.

[11] describes an Intrusion Detection Toolkit that supports a
number of different techniques for viewing alert or packet data.
This system implements data reduction through filtering. This work

is silent on the subject of filtering, or query methodology and per-
formance, and shows examples of what appear to be small datasets.

The VisAlert system [13] presents a visualization paradigm for
correlating network alerts generated by multiple sensors deployed
across a network. The paradigm is based on the observation that ev-
ery network alert must possess three fundamental attributes – what,
when and where – that in turn provide a consistent basis for corre-
lation. VisAlert uses a unique and flexible two-dimensional display
metaphor that is effective in helping users to switch between con-
text/focus modes of inspection. Their results use a dataset consist-
ing of 12-hours’ worth of network traffic.

While these previous works in network traffic visualization have
produced novel and useful presentation and interaction techniques,
they were tested using only small amounts of network data. In con-
trast, our work focuses on techniques suitable for use with large col-
lections of network connection data. Our “filtering” is provided by
highly optimized data management technology designed for rapid
data mining of terascale datasets. Our visualization emphasizes
straightforward and easy-to-understand techniques for rapid inspec-
tion of data distributions for the purposes of formulating queries.
These two technologies are manipulated via an easy-to-use visual
analytics interface. We believe such an approach is required to gain
traction on analysis and visualization of realistic-sized volumes of
network traffic and thus offers a completely new capability to the
field of network traffic analysis and visualization.

2.3 Query-Driven Visualization
The term “Query-Driven Visualization” refers to the process of

limiting visualization processing and subsequent visual interpreta-
tion to data that is deemed to be “interesting.” Several factors con-
tribute to the overall motivation for the query-driven visualization
approach. As data grows larger and more complex, simply building
larger and more scalable visualization systems produces a greater
amount of output, which in turn increases the cognitive load on the
viewer. In some cases, increasing the amount of visible output may
actually hinder understanding as depth complexity increases, im-
portant features are “hidden,” and so forth. Similarly, with increas-
ing data size and complexity, finding and displaying relevant data
becomes increasingly important to foster scientific understanding
and insight. The query-driven visualization approach also offers a
new foothold for gaining traction on the challenges of temporal and
multidimensional visualization and analysis since processing is fo-
cused on “sets” of data that satisfy the conditions for a given line
inquiry. An example here might be “what is the average electrical
charge of particles in an accelerator model that that spin away from
the main beamline and strike the accelerator wall over the course of
the entire simulation?”

The VisDB system combines a guided query-formulation facility
with relevance-based visualization [9]. Each data item in a dataset
is ranked in terms of its relevance to a query, and the top quartile of
results is then input to a visualization and rendering pipeline. Data
is presented in a way to cluster more relevant items closer together,
and less relevant items further apart. It is especially well-suited to
display the results of “fuzzy queries” in that inexact matches are
ranked and visually displayed in a way to convey relevance.

The TimeFinder system described in [6] supports interactive
exploration of time-varying data sets by providing the ability to
quickly construct queries, modify parameters, and visualize query
results. A query is formed by manually “drawing” a rectangular
box on a 2D plot where the x-axis represents time and the y-axis
represents the data range. Each such rectangular box is called a
“timebox” and comprises a range query. A user forms a multidi-
mensional range query through the union of several timeboxes. The
query results are presented in a fashion that implements a form of
data mining – more detailed information about the items satisfying
the query are presented in a separate window. TimeFinder reads all
data into memory and is therefore able to operate on only modest-

sized datasets.
Recently, the idea of coupling a visualization pipeline with a high

performance index and query system was described [24]. That work
shows that the computational complexity of visualization process-
ing can be constrained to the number of items returned by a query.
As such, that approach is the most suitable for use in query-driven
visualization and analysis of very large multidimensional datasets.

We are extending the work of [24] in this paper by: applying
indexing and querying techniques to network connection data; pro-
viding a performance comparison between a limited set of data min-
ing technologies; capitalizing upon statistical information in the
data management infrastructure to create easy-to-comprehend vi-
sual displays; combining all technologies into an integrated frame-
work for rapid knowledge discovery; demonstrating the combina-
tion’s applicability within the context of a “hero-sized” network
connection data analysis problem.
2.4 Indexing and Querying

One approach for examining a large amount of network con-
nection data is to focus attention on a relatively small number of
”interesting” connections. The naive approach of checking every
connection to see if it satisfies the definition of “interesting” may
take too long or be impractical. The basic strategy to accelerate
the selection process is to use an indexing structure [10]. Most
well known indexing structures are designed for data that are fre-
quently updated, like bank transactions. In banking applications
when some arbitrary record is modified, the index structure must be
similarly updated. In such applications, the query/update indexing
structure functions must both both be very efficient. For many tree-
based indexing structures, the time required for updating a record
is nearly the same as the time required for locating a record. Net-
work connection data is different from these types of transactional
databases in that the existing records are never modified. The only
change to the data is the addition of new records. It is possible to
gain query efficiency by sacrificing update efficiency, and bitmap
indexing technology is an example of technology with such a per-
formance tradeoff.

Bitmap indexing has been implemented in commercial database
systems and it is well accepted that it is efficient for low cardinal-
ity attributes where there are few distinct values [16]. Recently, it
was shown that such efficiency can be extended to high cardinality
attributes with Word Aligned Hybrid coding (WAH) [30]. FastBit
[21] is a research code that implements a number of different forms
of bitmap index compression, including WAH.

In a basic bitmap index, one bitmap is allocated for each dis-
tinct value of the indexed attribute, where each bitmap has as many
bits as the number of records in the indexed dataset. The size of
the index grows linearly with the attribute cardinality. There are a
number of strategies for reducing the size of a bitmap index, includ-
ing binning [22, 23], multi-component encoding [4], and compres-
sion [8, 29]. WAH compression was proven to keep the index sizes
compact as well as to significantly reduce the query processing time
compared to other indexing schemes [30].

In this paper, we compare the performance of a WAH com-
pressed bitmap index with one called a projection index [17]. The
projection index extracts the attribute values and stores them sepa-
rately so that when answering a query, only the attributes involved
in the query are read into memory. This approach is known to work
well for range queries, which are commonly used for analysis of
large datasets.

While exploring network connection data, an analyst might use
a query of the form “StartTime > 20050501 AND 10.102.0.0 <=
SourceIP <= 10.105.255.255.” In this example, each term like
“StartTime > 20050501” is called a range condition. In a typical
exploration, the analyst may specify a number of different range
conditions on different attributes. Such queries are typically re-
ferred to as “ad-hoc” since they do not follow a predefined pat-

tern. With ad-hoc queries, the bitmap index has a unique advantage
over tree-based indexing structures because the answers to individ-
ual range condition can be efficiently combined. Most tree-based
indexing methods suffer from the “curse of dimensionality.” As the
number of attributes in a dataset increases, tree-based indices be-
come progressively less competitive against the projection index.
Typical multi-dimensional indexing tree-based – kd-trees, for ex-
ample [1] – usually index all variables or dimensions of a dataset.
When answering an ad-hoc range query involving only a few vari-
ables, tree-based multi-dimensional indices are much less efficient
than the projection and bitmap indices, which do not suffer from
the “curse of dimensionality.”

To answer multidimensional range queries, we first use the
bitmap indices to resolve each individual range condition and then
combine the partial solutions with bitwise logical operations. The
time required to resolve each range condition is proportional to the
size of the bitmaps involved. Moreover, the overall query process-
ing time grows linearly with the number of range conditions speci-
fied. The time required by the projection indices also scales linearly
with the number of range conditions, however, the time required to
resolve each individual range condition using a projection index is
typically much longer than that of a bitmap index as we will empir-
ically show later in Section 3.

3 Query-Driven Network Traffic Analysis
Performance Study

Since most visual analytics analytics applications perform some
type of data mining, increasing data mining performance is central
to reducing the duty cycle in the analysis process. In this section
we measure the performance of three different technologies for data
mining.

We begin with three background sections. The first describes the
network traffic data we use in the performance measurements as
well as in Section 4’s case study. The second identifies the exper-
iment’s computing environment. The third focuses on each of the
three competing data mining implementations. The performance
study consists of two sets of tests – serial and parallel – for each of
the three competing technologies.
3.1 Network Traffic Data

The network traffic data in our performance experiment and net-
work traffic analysis case study consists of 42 weeks’ worth of
network connection data collected from a Bro system running at
NERSC consisting of about 2.5 billion records having a total size
of about 281GB. Each record contains 25 attributes, including the
source IP address, the destination IP address, source port, desti-
nation port, start time, duration, number of bytes sent along with
additional network connection information. To increase query effi-
ciency, we have split the IP addresses into four octets A, B, C and
D. For instance, IPSA refers to the class A octet of the source IP ad-
dress. Data is stored in a one-week-per-file distribution – not neces-
sarily the most efficient for parallel computing, but convenient for
the analysts managing the data and interpreting the query results.

In addition to the raw data, the bitmap indices themselves require
a total of about 78.6 GB of space. We created a standalone utility
that creates the indices: it reads all network connection data and
uses FastBit to generate compressed bitmap indices. It is worth not-
ing that the 78.6 GB of space required for the indices is only about
one-third the size of the raw data. This figure compares favorably
to tree-based indices (e.g., B-trees) typically found in transactional
database systems where the tree-based indices are typically three
times the size of the raw data.
3.2 Computing Environment

We use a single computing platform for both the performance
experiments and the network traffic analysis case study. The plat-
form is a 32-processor SGI Altix with 192GB of RAM and 40TB
of fiberchannel RAID capable of delivering 500GB/s in sustained

I/O performance. We chose this platform due to its combination
of vast amounts of memory and its high-performance I/O to sec-
ondary storage. Such platforms are well-suited to data intensive
analysis and visualization tasks.

3.3 Query Implementation
For the purposes of measuring and comparing query response

time, we use three different approaches. The first is representative
of the type of technology typically used in production networks for
traffic and security analysis. The second has found use in analysis
of large collections of high-energy physics data and is based upon
projection indices. The third is FastBit, which uses bitmap index-
ing, which is the form of indexing in use by all major commercial
database systems.

The first approach is a series of scripts and shell-based tools
(awk, grep, etc.) that parse and search through an ASCII version
of the connection records. At first glance to one outside the net-
work security business, this approach may seem to be naive. In
fact, this approach is widely used in network traffic analysis to
overcome limitations caused by proprietary data formats and the
frequent need to perform ad-hoc analysis. Shell scripts and tools
are easy to change, readily shareable, highly transportable across
platforms and, of course, can be quite slow compared to com-
piled and optimized applications. They are relatively easy to write,
which makes them ideal for fast “one-off” analysis tasks. That very
strength becomes a liability when viewed from a software engineer-
ing perspective – shell-based are don’t exhibit the type of modular-
ity that promotes reuse and are not especially suitable for use on
parallel platforms. Shell-based tools have O(n) complexity – all
data records must be examined in the search for those that meet a
given set of criteria. Historically, network analysts typically work
with relatively small collections of data – hours’ or days’ worth of
traffic. For those small data sizes, tools based on shell scripts exe-
cute with a duty cycle on the order of 10s or 100s of seconds. Since
we are tackling a much larger problem in this paper – 42 weeks’
worth of network traffic – there is value in showing how existing
approaches are not effective in reducing the analytics duty cycle.

For the second and third types of queries, our implementation
is is based on ROOT [2], which is an object-oriented data analysis
system originally developed for scientific analysis and data man-
agement of terascale volumes of high-energy physics data. ROOT
is widely recognized as the “gold standard” for data mining and
analysis in the high energy physics community where experiments
routinely generate tens to hundreds of terabytes of data per year.
Data analysis in that space typically consists of searching for a par-
ticle detector events that satisfy a very narrow range of criteria.

The ROOT system has a comprehensive set of analysis capabili-
ties and basic visualization features and supports parallel operations
– including parallel data mining and analysis. While its native mul-
tidimensional query engine is built using “projection indices,” we
extended ROOT so that it can answer queries using either its na-
tive projection indices or FastBit’s compressed bitmap indices. To
support this type of dual-mode use, we created two separate ver-
sions of the network traffic data – one organized specifically into
ROOT’s projection index format, and one that uses FastBit’s native
data storage format.

3.3.1 Serial Performance Comparison
To establish a performance baseline, we measure the time re-

quired to answer the following three-dimensional network traffic
analysis query (i.e., a query comprised of three variables): “select
IPSB, IPSC, IPSD where IBSB < 100 AND IPSC < 100 AND IPSD
= 128.” This query locates those network connections originating
from a given range of IP addresses. We performing this query on
42 weeks’ worth of network data.

The time required to answer this query using “typical network

traffic analysis software” is approximately 51,000 seconds. 1 For
the projection index test, we use ROOT with only its projection in-
dices, i.e., without FastBit. In that configuration, the time required
to answer the query is 1269 seconds. By switching to the FastBit’s
bitmap indices in ROOT, the time required to answer the query is
419 seconds.

By using FastBit’s bitmap indices in our ROOT application, we
realize a factor of three performance gain simply by migrating from
projection to bitmap indices. While these results were run using
network connection data as the source, the relative performance
gain is consistent with previous work comparing multidimensional
query performance on large collections of high energy physics data
[25].
3.3.2 Parallel Performance Test

Like many other endeavors in high performance computing, data
intensive operations stand to benefit from parallelism. We imple-
mented a battery of tests to measure the performance of the three
competing technologies when run in a parallel configuration. We
ran tests using 1, 2, 6, 13 and 21 processors – these levels of paral-
lelism were chosen so that each processor will be responsible for an
equal number of weeks’ worth of network traffic data. Since there is
substantial variation in the amount of connection data from week to
week, a by-week domain decomposition does not ensure even load
balance in terms of computation or I/O. For these tests, we used a
variant of a query that appears in Section 4: find all records where
(DP==5554) and (STATE==1) and (IPSA==220) and (IPSB==184)
and (IPSC==26). The origin of this particular query and its impor-
tance appears in Section 4.

The results are summarized in Table 1. The first column shows
the number of processing elements (PEs) used for our perfor-
mance study. The second column shows the query response time
for evaluating the 5-dimensional query with the shell-based ap-
proach. Columns three and four show the performance results of
ROOT/Projection Index and ROOT/FastBit. As expected, the shell-
based approach, which is most commonly used for network traffic
analysis, is by far the slowest. ROOT/FastBit, on the other hand,
shows excellent performance. With 21 processors, the time to ana-
lyze a 5-dimensional query over 42 weeks of network traffic data
(281 GB) only takes about 2 seconds. Neither of the three ap-
proaches has optimal scalability due to data load imbalance. FastBit
is especially well suited for these kinds of queries since only a small
fraction of the bitmap index needs to be read to satisfy the query.
The other two approaches must to scan the whole 281 GB of data.
FastBit’s computational complexity is at worst O(h) where h is the
number of items returned by the query [30], while the other two
approaches have O(n) complexity where n is the number of data
records being searched.

4 Network Traffic Analysis Case Study
In this section, we present a case study illustrating how the com-

bination of fast search/query operations combined with interactive
analytics and visualization gives rise to a highly practical and effi-
cient methodology for network traffic analysis. For this case study,
we use the same 42 weeks’ worth of network data and computing
platform as in Section 3. The case study shows how an iterative
process of visual inspection and data mining lead to the discovery
of a distributed scan.

A distributed scan is a specialized form of a “port scanning” at-
tack in which multiple distributed hosts systematically probe for
vulnerabilities on a set of hosts. A specialized form of distributed
scanning involves attacking hosts that have themselves been com-

1Our “shell scripts” consist of a mixture of “awk,” “grep,” run in a
Bourne shell script. A substantial fraction of the 51,000 seconds we re-
port is due to “awk” processing logic. Whether that processing time would
be substantially reduced by using “perl” is an open question, but outside the
scope of this paper.

PEs Shell-based ROOT/Projection Index ROOT/FastBit
1 156381.14 1357.07 5.36
2 71835.32 600.05 3.72
6 21952.12 214.14 2.66

13 9389.96 113.88 2.58
21 2237.53 98.95 2.05

Table 1: Parallel performance evaluation of a 5-dimensional net-
work traffic analysis query: Find all records where (DP==5554)
and (STATE==1) and (IPSA==220) and (IPSB==184) and
(IPSC==26). The time is reported in seconds. ROOT-FastBit signif-
icantly outperforms the two competing approaches. Timings for the
shell-based scripts are estimates based upon smaller runs that pro-
cess 30-days’ worth of data. The estimates assume a linear increase
in runtime as a function of data size. The increase in runtime for
shell scripts for the earlier query is due to an increase in the amount
of awk processing logic needed to answer this particular query.

promised and conscripted for use in a distributed scan attack by a
third party. The third party acts as a “central authority” for manag-
ing the attack. This form of distributed scan is known as a “bot-net”
attack.

4.1 Visual Analytics Application Overview
To achieve the results we present here, we constructed a custom

interactive visual analytics and data mining application and used it
to discover a distributed scan. The application makes calls to Fast-
Bit [21] to perform network traffic data I/O and queries. FastBit
provides the ability to return the number of items that would satisfy
a query, and our application leverages this capability to rapidly con-
struct and display histograms. These histograms, combined with vi-
sualization and interaction, provide the basis of our visual analytics
application. The visualization and rendering portion of our appli-
cation uses OpenRM Scene Graph [5] and the GUI is built using
FLTK [20].

The application’s use pattern is as follows. First, the applica-
tion loads the FastBit “table file” and per-variable indices. The
“table file” contains metadata about each of the variables such as
data type, min/max values, etc. Next, the user selects any of the
variables for display, and the application produces and displays a
histogram of counts for each of FastBit’s internal bin ranges. This
information comes “for free” when using FastBit – no queries are
needed to obtain this information. After visual inspection, the appli-
cation provides the means for forming and posing several different
types of queries. The results of a query then appear as a new vari-
able in the application’s list of variables and can then be visualized
using one of several different dimension-appropriate visualization
techniques. A query is formulated by the “cross-product” of range
selections that may span an arbitrary number of variables.

The application provides three different mechanisms for spec-
ifying such range selections. The first is an interactive selection
widget where user specifies a contiguous range of histogram bins
using a selection box that is similar to Hochheiser’s “timeboxes”
[6] but may be applied to any of the twenty-five network traffic
variables to produce an n−dimensional query. The second method
allows a user to specify a starting value, an ending value and a step
size. The application will automatically generate histogram bins
that are evenly spaced over the user’s range selection specified by
the typein. The third method is a typein where a user specifies a
set of individual histogram bin numbers. This set is simply a list
of integer values – bins may be specified in any order, including
disjoint, descending, random, etc. The application’s query engine
combines parameters from each of the three different query specifi-
cation mechanisms to form an ordered n−dimensional query. The
field resulting from such a query is an n−dimensional dataset of V
vector elements. The n spatial axes are formed by the ranges along
each of n histograms. The V vector elements are formed by V user-
specified histogram bins. Such a formulation of spatial axes and

vector components was convenient for this particular case study.
4.2 Network Traffic Analysis

It is necessary to analyze multiple time windows of data to un-
derstand the full behavior of a given situation. In this case, the
IDS indicated a large number of scanning attempts on tcp port 5554
(Sasser type worm). The larger data set is looked at in order to de-
termine large scale temporal behavior, while the local behavior is
looked at from a smaller time window perspective. This sort of
activity is typical of an analysis scenario.

Figure 1: This hisogram shows the number of unsuccessful connec-
tion attempts over a 42-week period on (2000 ¡= DP ¡= 65535)
with radiation excluded. Based upon the results from this figure, we
chose to focus on DP==5554 in Week Three for the rest of the case
study. One axis is destination port, the other is time.

First, we will search the 42 weeks’ worth of data to identify those
ports on which there is a large number of unsuccessful connection
attempts. An unsuccessful connection attempt is indicated by a
particular value of one of the variables in the traffic logs. Figure
1 shows a plot of counts where one axis is destination port num-
ber and the other is time. Each “bin” in the time axis represents
one week’s worth of activity. The height of each bar represents
the number of unsuccessful connection attempts during a particu-
lar week on a particular destination port across all addresses within
the target destination network. We conclude from this stage of the
analysis that there is a high degree of suspicious activity in Week
Three on destination port (DP) number 5554.

0

450392

220
450392

 (IPS_A <= 300)&& (STATE==1) && (DP==5554)

Figure 2: This image shows a 1D plot of IPS A where DP equals
5554 and STATE is equal to 1. The bin with the largest number
of counts is indicated as “220,” which means the source of the sus-
picious activity is from a host or hosts having an IP address where
“220” is the first address octet. The bars are colorized such that red
bars lie three standard deviations or greater from the mean,which in
this case is a value close to zero.

The next step in the analysis process is to determine the ad-
dresses of the hosts from which the unsuccessful connection at-
tempts originate. We thus performed the following query over
the 42 week dataset: “Find all hosts where IPSA <= 300 &&

STAT E == 1 && DP == 5554”. The horizontal axis in Figure
2’s histogram is range of addresses within the Class A octet of the
source host IP number. The height of each bar indicates the number
of unsuccessful connection attempts from hosts during Week Three
on DP 5554 from each Class A address. Note that we are focus-
ing only on the A octet of the source host address at this stage of
our analysis. We see a spike for the A octet address of 220, which
means that all of the suspicious activity is originating at a host or
hosts within a range of IP addresses of 220 in the A octet. To aid the
user in quickly and positively identifying anomalies, our applica-
tion provides a a toggle on each variable’s display panel to highlight
the the “top N” items in a dataset. In addition, the application pro-
vides a statistically-based transfer function so that histogram bars
are color-coded by the relationship between a bar’s variance and
the standard deviation of histogram counts. Bars that are colored
red lie about three standard deviations above the mean histogram
count.

0

36461

184
36461

 (IPS_B <= 255)&& (STATE==1) && (DP==5554) && (IPS_A==220)

Figure 3: Here we see that from within the 220 Class A octet, the
Class B address with the most suspicious traffic is 184. Several
potential class B candidates emerge – colored red – and we choose
184 for further investigation. The horizontal axis the the 254 possible
Class B addresses, and the vertical axis is the count of unsuccessful
connection attempts.

We next refine our search to identify the range within the Class
B octet where the suspicious activity originates. To do so, we pose
a query to count the number of unsuccessful connection attempts
to DP = 5554 in Week Three from the 220 Class A address block.
The result is the histogram in Figure 3. For the sake of brevity in
this case study, we choose to focus on the spike at IPSB = 184 –
another interesting candidate appears at about IPSB = 128 that will
ignore for the rest of this case study. Using the results from Figures
2 and 3, we know that all unsuccessful connection attempts for this
particular investigation originate from within the 220.184 block of
IP addresses.

0

5209

117
5209

232
5171

74
5010

31
4806

220
4346

26
4184

47
4087

 (IPS_C <= 255)&& (STATE==1) && (DP==5554) && (IPS_A==220) && (IPS_B==184)

Figure 4: This image shows several spikes in the source Class C ad-
dress range where STATE==1, DP==5554, IPSA == 220, IPSB ==
184 and week=3. We identify the seven largest spikes for further
investigation. The horizontal axis is the 254 possible Class C ad-
dresses, and the vertical axis the number of unsuccessful connection
attempts from the 220.184 network segment.The next step is to discover the source host address range within
the Class C octet. Unlike the source address with Class A and B
octets, Figure 4 shows there are unsuccessful connection attempts
from hosts in several different addresses in the Class C octet. Seven

of these spikes – highlighted by our application – have visually sim-
ilar levels of suspicious traffic. We hypothesize that hosts on these
seven Class C network segments are part of a distributed scan.

Figure 5: This image shows the class D portion of the addresses of
the attacking hosts. We use an iterative compound query to produce
this image. The “constant portion” of the query is STATE==1,
DP==5554, IPSA==220, IPSB==184. The “iterative” portion of
the query loops over the seven Class C addresses. The spikes are
color-coded by their associated Class C address. The absence of
duplicate-colored spikes indicates there are seven unique hosts par-
ticipating in this particular attack. This color-coding scheme is also
used in Figures 6 and 7.

We take this idea one step further to discover the source ad-
dresses within the Class D octet. Unlike previous queries, each
of which is a single, straightforward range query, we must take a
slightly different approach to find the D octet addresses. Our ap-
plication lets us specify a discrete set of variable values to include
as part of a query – in this case, these discrete values are the seven
unique Class C addresses seen in Figure 4. The next query is com-
prised of seven different sub-queries – one for each of the seven
unique Class C source addresses. Our aim is to discover all Class
D source addresses within each of the seven unique Class C ad-
dresses. The result is Figure 5, which indicates traffic from each of
the Class D IP addresses corresponds to a single Class C address.
In other words, each source host address has a unique Class C and
Class D address. At this point, we have positively identified the IP
addresses of all the hosts from which the suspicious traffic origi-
nates.

0

220
 (IPR_C <= 255)&& (STATE==1) && (DP==5554) && (IPS_A==220) && (IPS_B==184)

Figure 6: This image shows the set of Class C destination addresses
being scanned by each of the source hosts. Note the overlap in
one of the destination address ranges. There are seven different
colored plots in this image – plots are colored by source host IP
number. Two remote hosts are attempting to scan the same block
of destination class C addresses as evidenced by the “overlay” of red
and green plots. The horizontal axis is the 254 possible destination
Class C addresses, and the vertical axis is the number of unsuccessful
connection attempts to each of those destination Class C addresses.

The next steps are to look at the problem from a different di-
rection. Rather than focus on identifying the source host addresses

– which we have now identified – we are interested in discover-
ing their access patterns through destination IP addresses. Looking
first at the destination Class C octet, we see in Figure 6 that each
of the seven participating hosts is sending traffic to about 21 or 22
contiguous class C addresses.

Figure 7: This image shows the coverage in destination IP space by
each of the hosts participating in the distributed scan. The axes are
the destination C and D address octets. We represent an unsuccessful
connection attempt at each (C,D) destination address, and color-
code the point based upon the source host address. Two of the
remote hosts are scanning the identical block of (C,D) addresses.
We use blended transparency and large point primitives to convey
this overlap. The overlap appears as the red-green group in the
center of the image.

Extending the idea of Figure 6, we we formulate a higher-
dimensional query query that produces the histogram shown in Fig-
ure 7. Figure 7 uses a 3D scatterplot to confirm the expectation that
attacking hosts are attempting to have uniform coverage in the des-
tination address space. As with Figure 6, Figure 7 color-codes each
point based upon the IP address of the attacking host. We use trans-
parent point primitives in 3D for this visualization. Looking closely
at the “red stripe,” it is possible to see the overlay of red points over
green points, confirming the behavior we saw previously in Figure
6. Figure 7 shows that each attacking host’s scan pattern is (1) to
“march through” all Class D addresses for each Class C address,
and (2) that each has been assigned a contiguous group of Class C
addresses to scan.
4.3 Discussion

Two of the authors on this paper are network security experts
whose job duties include operation of production networking facil-
ities. They both contributed to the design and engineering of this
new approach, and both are in a good position to evaluate its ef-
fectiveness. Their comments, paraphrased below, are particularly
insightful.

Because our visual analytics application processes and visual-
izes statistical information about network traffic data – rather than
actual network traffic data – it affords a certain amount of insulation
from sensitive information. This approach will allow more people
access to network data than otherwise might be possible due to data
sensitivity and data size.

The application’s general design principles result in a system that
is simple to use and easy to understand. The visualizations are very
straightforward and require no complex mental mapping to under-
stand. The simple yet effective user interface and interaction design
means that this type of interactive analytics very accessible since
the learning curve is very shallow and only a passing knowledge of
network traffic data is needed to interpret the results.

Both network experts felt this approach was a very useful method
for determining the components of a distributed scan. Both were
eager to apply the technology to other types of forensic network se-
curity projects. Both were excited by the extremely short duty cycle

in the data mining process. Neither had ever had the opportunity to
explore a single collection of network traffic data of such a large
size.

5 Conclusion
In an information-dominated age, the ability to quickly and ac-

curately understand data makes the difference between success or
failure in science, business, medicine and education. The work we
have presented in this paper takes direct aim at reducing the duty
cycle in data-intensive knowledge discovery applications. Our ap-
proach – called query-driven visualization and analysis – blends
technologies from data management, visualization, analysis and in-
teractive discourse. Our network traffic analysis case study high-
lights how such a combination provides new capabilities enabling
rapid detection and analysis of a distributed network scan.

To reduce the duty cycle in network connection data analysis,
we have leveraged several different concepts. First, we accelerate
data-mining mechanics by using very efficient index/query scien-
tific data management technology that uses compressed bitmap in-
dices. Second, our visualization techniques are centered about the
idea of displaying data distribution information (histograms) that is
readily available from the compressed bitmap indexing infrastruc-
ture. Focusing visualization in this fashion helps the network ana-
lyst to quickly discover “hot spots” in data and to focus subsequent
inquiry on those areas. Third, complex multidimensional queries
are automatically constructed through “histogram cross-products,”
which has proven to be a highly effective visual analytics technique
for data mining. These concepts were demonstrated on a “hero-
sized” dataset consisting of about 2.5 billion records of network
connection data collected over a 42-week period.

Acknowledgement
This work was supported by the Director, Office of Science, Of-

fice of Advanced Scientific Computing Research, of the U.S. De-
partment of Energy under Contract No. DE-AC02-05CH11231.
The authors wish to acknowledge the contributions by Steven A.
Smith, Los Alamos National Laboratory; Brian Tierney and Jason
Lee, Lawrence Berkeley National Laboratory to a LBNL Technical
Report LBNL-59166, which is a predecessor of the work reported
in this paper. The authors wish to particularly thank Smith for a
suggestion that evolved into the inspiration for using FastBit’s his-
togram bins as the source of visual analytics in performing guided
query formulation.

References
[1] John Bentley. Multidimensional binary search trees used for associa-

tive search. Communications of the ACM, 18(9):509–516, 1975.
[2] Rene Brun and Fons Rademarkers. Root – an object oriented data

analysis framework. In Proceedings of the AIHENP 1996 Workshop,
pages 81–86, 1997.

[3] Joe Burrescia and William Johnston. Esnet status update. Internet2
International Meeting, 2005.

[4] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation.
In Proceedings of the 1998 ACM SIGMOD: International Conference
on Management of Data, pages 355–366, New York, NY, USA, 1998.
ACM press.

[5] R3vis Corpoation. OpenRM Scene Graph. http://www.openrm.org,
1999-2006.

[6] Harry Hochheiser and Ben Shneiderman. Visual specification of
queries for finding patterns in time-series data. In Proceedings of Dis-
covery Science, pages 441–446, 2001.

[7] Van Jacobsen, Craig Leres, and Steven McCanne. tcpdump.
ftp://ftp.ee.lbl.gov/, 1989.

[8] Theodore Johnson. Performance measurements of compressed bitmap
indices. In Proceedings of the 25th International Conference on Very
Large Data Bases, September 1999.

[9] Daniel Keim and Hans-Peter Kriegel. Visdb: Database exploration
using multidimensional visualization. IEEE Computer Graphics and
Applications, 14(4):40–49, 1994.

[10] Donald Knuth. The Art of Computer Programming, 2nd Ed., Volume
3. Addison-Wesley, 1998.

[11] Anita Komlodi, Penny Rheingans, Utkarsha Ayachit, John Goodall,
and Amit Joshi. A user-centered look at glyph-based security visu-
alization. In Proceedings of the 2005 Workshop on Visualization for
Computer Security, October 2005.

[12] Stephen Lau. The spinning cube of potential doom. Communications
of the ACM, 47(6):25–26, 2004.

[13] Yarden Livnat, Jim Agutter, Shaun Moon, Robert Erbacher, and Ste-
fano Foresti. A visual paradigm for network intrusion detection. In
Proceedings of the 2005 IEEE Workshop on Information Assurance
And Security, June 17–19 2005.

[14] Steven McCanne, Craig Leres, and Van Jacobsen. libpcap.
ftp://ftp.ee.lbl.gov/, 1994.

[15] Jonhathan McPherson, Kwan-Liu Ma, Paul Krystosek, Tony Barto-
letti, and Marvin Christensen. Portvis: A tool for port-based detection
of security events. In Proceedings of CCS Workshop on Visualization
and Data Mining for Computer Security, ACM Conference on Com-
puter and Communication Security, October 2004.

[16] Patrick O’Neil. Model 204 architecture and performance. In Sec-
ond International Workshop in High Performance Transaction Sys-
tems. Lecture Notes in Computer Science, vol. 359, Springer-Verlag
4059, 1987.

[17] Patrick O’Neil and D Quass. Improved query performance with vari-
ant indices. In Proceedings of ACM SIGMOD International Confer-
ence on Management of Data. ACM Press, May 1997.

[18] Vern Paxson. Bro: A system for detecting network intruders in real-
time. In Proceedings of the 7th USENIX Security Symposium, January
1998.

[19] Peter Phaal, Sonia Panchen, and Neil McKee. Inmon corporation’s
sflow: A method for monitoring traffic in switched and routed net-
works. IETF RFC 3176, http://www.app.sietf.org/rfc/rfc3176.html,
2001.

[20] Easy Software Products. The fast light toolkit. http://www.fltk.org,
2006.

[21] Lawrence Berkeley National Laboratory Scientific Data Manage-
ment Group. Fastbit. http://sdm.lbl.gov/fastbit, 2005.

[22] Arie Shoshani, Luis Bernardo, Henrik Nordberg, Doron Rotem, and
Alex Sim. Multidimensional indexing and query coordination for ter-
tiary storage management. In Proceedings of the 11th International
Conference on Scientific and Statistical Database Management. IEEE
Computer Society 214225, July 1999.

[23] Kurt Stockinger, Dirk Duellmann, Wolfgang Hoschek, and Erich
Schikuta. Improving the performance of high-energy physics anal-
ysis through bitmap indices. In Proceedings of the 11th International
Conference on Database and Expert Systems Applications, 2000.

[24] Kurt Stockinger, John Shalf, Kesheng Wu, and E. Wes Bethel. Query-
driven visaulization of large data sets. In Proceedings of IEEE Visual-
ization, pages 167–174, October 2005.

[25] Kurt Stockinger, Kesheng Wu, Rene Brun, and P. Canal. Bitmap in-
dices for fast end-user physics analysis in root. In Nuclear Instruments
and Methods in Physics Research, Section A – Accelerators, Spec-
trometers, Detectors and Associated Equipment. Elsevier, to appear.

[26] Cisco Systems. Cisco netflow collection engine.
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/, 2005.

[27] James J. Thomas and Kristin A. Cook eds. Illuminating the Path –
The Research and Development Agenda for Visual Analytics. IEEE
Computer Society Press, 2005.

[28] Benjamin Uphoff and P. Criscoulo. A framework for collection and
management of intrusion detection data sets. In Proceedings of the
16th Annual FIRST Conference on Computer Security Incident Han-
dling, June 2004.

[29] Kesheng Wu, Ekow Otoo, and Arie Shoshani. A performance com-
parison of bitmap indices. In Proceedings of the ACM CIKM Interna-
tional Conference on Information and Knowledge Management. ACM
559561, November 2001.

[30] Kesheng Wu, Ekow Otoo, and Arie Shoshani. On the performance
of bitmap indices for high cardinality attributes. In In Proceedings of
the International Conference of Very Large Data Bases, pages 24–35,
2004.

